Compute relative vorticity using Green's Theorem

$$
\begin{equation*}
\zeta=-\left[\frac{\partial(a \cos \delta)}{\partial \delta}+\frac{\partial(b \cos \epsilon)}{\partial \epsilon}+\frac{\partial(c \cos \phi)}{\partial \phi}\right] / R . \tag{1}
\end{equation*}
$$

The unit vector in the direction of δ is $\nabla \delta /|\nabla \delta|=\mathbf{P} \times \mathbf{U}$. For a grid cell on Face 1 of the CS grid, the outgoing perpendicular unit vectors for the right and left edges are \mathbf{V} and $-\mathbf{V}$, and for the top and bottom edges are $-\mathbf{U}$ and \mathbf{U}. By Green's Theorem, the integral of $\partial(a \cos \delta) / \partial(R \delta)$ over the area of the grid cell equals the line integral of $(a \cos \delta)$ multiplied by $\mathbf{P} \times \mathbf{U}$ dotted with normal edge unit vector. Thus, the summation of all terms for the right edge line integral is

$$
\begin{align*}
& L(\mathbf{P} \times \mathbf{U} \cdot \mathbf{V} a \cos \delta+\mathbf{P} \times \mathbf{V} \cdot \mathbf{V} b \cos \epsilon+\mathbf{P} \times \mathbf{W} \cdot \mathbf{V} c \cos \phi)= \\
& =L(\mathbf{P} \times \mathbf{U} \cdot \mathbf{V} a \cos \delta+\mathbf{P} \times \mathbf{W} \cdot \mathbf{V} c \cos \phi)=L(a \cos \nu-c \sin \nu)=L \mathbf{A} \cdot \mathbf{V} \tag{2}
\end{align*}
$$

where L is the arc length of the edge. For the bottom edge

$$
\begin{align*}
& L(\mathbf{P} \times \mathbf{U} \cdot \mathbf{U} a \cos \delta+\mathbf{P} \times \mathbf{V} \cdot \mathbf{U} b \cos \epsilon+\mathbf{P} \times \mathbf{W} \cdot \mathbf{U} c \cos \phi)= \\
& =L(\mathbf{P} \times \mathbf{V} \cdot \mathbf{U} b \cos \epsilon+\mathbf{P} \times \mathbf{W} \cdot \mathbf{U} c \cos \phi)=L(-b \sin \mu+c \cos \mu)=L \mathbf{A} \cdot \mathbf{U} \tag{3}\\
& \zeta=-\left[(L \mathbf{A} \cdot \mathbf{V})_{R I G H T}-(L \mathbf{A} \cdot \mathbf{V})_{L E F T}-(L \mathbf{A} \cdot \mathbf{U})_{T O P}+(L \mathbf{A} \cdot \mathbf{U})_{B O T T O M}\right] / K \tag{4}
\end{align*}
$$

where K is the grid cell area. If $\mathbf{A}, \mathbf{U}, \mathbf{V}, \mathbf{W}$ and \mathbf{S} are all perpendicular to \mathbf{P}, then $\mathbf{A} \cdot \mathbf{V}=\mathbf{P} \times \mathbf{A} \cdot \mathbf{P} \times \mathbf{V}=-\mathbf{A} \times \mathbf{P} \cdot \mathbf{P} \times \mathbf{V}=-\mathbf{S} \cdot \mathbf{P} \times \mathbf{V}$, and

$$
\begin{equation*}
\zeta=\left[(L \mathbf{S} \cdot \mathbf{P} \times \mathbf{V})_{R I G H T}-(L \mathbf{S} \cdot \mathbf{P} \times \mathbf{V})_{L E F T}-(L \mathbf{S} \cdot \mathbf{P} \times \mathbf{U})_{T O P}+(L \mathbf{S} \cdot \mathbf{P} \times \mathbf{U})_{B O T T O M}\right] / K \tag{5}
\end{equation*}
$$

which is a well known formula for the computation of ζ using Green's Theorem. A similar formula is valid for spherical polygons, not just quadrilaterals.

