Advection of momentum on primary cell edges

One method for momentum advection is outlined in Section 4; if an edge is perpendicular to \mathbf{W}, then the advective change of \mathbf{A} may be integrated from the differential form $-\Delta t(w \partial \mathbf{A} / \partial \lambda+n \cos \phi \partial \mathbf{A} / \partial \phi) / R \cos \phi$. In this form, $\partial \mathbf{A} / \partial \lambda$ is assumed to be computed along a line of latitude which, in general, is not a great circle arc. If $\partial \mathbf{A} / \partial \lambda$ were computed using points on an arc that is the perpendicular bisector of the edge, then the derivative is not computed as though it lay along a line of latitude, but as though it lay along a great circle arc, basically an "equator". In this situation, $\cos \phi$ is discarded as 1 and the advective change of \mathbf{A} is integrated from the form $-\Delta t(w \partial \mathbf{A} / \partial \xi+n \partial \mathbf{A} / \partial \phi) / R$ where ξ is the angular rotation coordinate running around the imagined "equator".

